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METHOD OF CHARACTERISTICS FOR THE DYNAMIC
THERMOELASTIC PROBLEM OF A CUBICALLY
ANISOTROPIC BODY IN STRESSES

M. D. Martynenko and S. M. Bosyakov UDC539.3

The equations of motion of a two-dimensional cubically anisotropic thermoelastic medium in stress-tensor
components have been obtained. The equation of characteristics has been derived and the dependences of the
phase and group velocities of propagation of discontinuity surfaces on the slope of the normal to the charac-
teristic surface and the period of relaxation of the heat flux have been investigated using this equation.

Introduction. The dynamic problems of the theory of thermodasticity of isotropic and anisotropic bodies play
an important role in investigating the processes of deformation of continuous media. However in most cases their so-
Iution is associated with the use of the theory of plane waves and is made difficult by the fact that dispersion equa-
tions have a cumbersome form and can be solved analytically just for special directions or planes. Thus, the
propagation of one-dimensional waves in an isotropic medium has been investigated in [1], while the propagation of
one-dimensional and two-dimensiona waves in eagtic anisotropic bodies with alowance for the relaxation time of the
heat flux has been considered in [2, 3]. Of undoubted interest are [4, 5], where results of investigations of wave proc-
esses in a thermodastic medium using the method of characteristics are given. Below we consider implementation of
the method of characteristics as applied to an analysis of the regularities of propagation of discontinuity surfaces in a
two-dimensiona cubically anisotropic medium in the plane x3=0.

Method of Characteristics. To describe the dynamic processes in the plane x3=0 of a cubically anisotropic
medium we write the Duhamel-Neumann law in the following form [2, 3]:

011 = A€y + Ageyy — BT, Opp = Asey1 + A1y =BT, O33= Ay (€11t €x) =BT, 015 =0y =2As8)5, 1)

where g :% (Oyu + Oyy)) is the deformation tensor; 0 =0/9x, k, 1=1, 2.
Expressions (1) yield the following eguations of motion [2, 3]:
2
(A4A+sai2) U+ (A +A) 0 S e+ X =pli+ BT, =12, @
k=1
here p is the density, X; are the mass forces, Uj = azui/atz, i=1,2 and e=A; - Ax—2A4

To pass to the equations of motion in stresses we take into account that the independent components in (1)
are 013, 012, and 0. We differentiate (2) with respect to x and xj and add them together. As a result we obtain

2
A QU +0u) + & (007U + 0,0, ) + 2 (Ao + A) 30, S B+ 0% + 8% = p (3l + 9y + 2800,T
k=1
or
2
2A,Ne; + £0,0; (6 + §;) + 2 (Ay + Ay) 0;0; z &kt 0% +0;X = Zpé%j +200,0,T. 3
k=1
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Expressions (1) yield the following relations for the deformation tensor:

_ A1~ A0 BT _AOn A0y BT
€11 = 2 2 ! 2~ 2 2 )
A-Ay  AtA A=A At Ay
4
O3 +0pp  2BT 01
e, + = , E1o= 1.
We introduce (4) into system (3) for the cases where i =| :1,—2 and i =1, j =2. Upon obvious transformations
we will have
. 2 .. 2
A (AgAT1) = PO1y) + (Ag +Ag) (Ap = Ay = 2Ay) 01011 = Ay (AT, — POg) + Ay (Ay + Ag) 01055 + 01Xy +
+B (AL~ A) (ALT-pT) =0,

©)

ATy = P01y + Agd10; (013 + Op) + 05Xy +0;X, =0,
. 2 . 2
A1 (AA02 = POZ) + (Ag + Ag) (A = Ay = 2Ay) 05055 = Ay (AgAT11 = PO1) + Ay (Ag + Ag) 05011 + 0%, +
+B (A - A) (AAT-pT) =0.

To obtain a complete system of equations of generalized interconnected thermoelasticity for a cubically anisotropic
body in the plane x3=0 we use the following heat-conduction equation [3, 4]:

. e DZ 2 D
MT-c, T+ =ToBHY 8u*T Y 8u (6)
%cl k=1 %

From (6), with account for (4), we obtain

0 0
AAT = (T +1T) [, + 2T, PTo
0

011+ 0y + T (G4 +0pp) =0. )
A+ Ao A1+A2(11 22T (011 + 0)))

2 2
Here A = L + 0—2
axf 6x2

We prescribe the initial data for system (5) and (7) on the surface Z = Zg(t, X1, Xp) and pass to new variables
according to the following scheme [5]:

Z:ZO(t’Xl’XZ)’ Zk:Zk(t’ Xl’XZ) , k:1,2.

Then

yex 2 oyoz oy 2 oy azoz dy 0z,

= 2 7 - . oy 07
0%, = 07 axk' 0x,0X, ijZ=O aZjazi 0%y 0X,, |§0 0Z; 9%, 0%

2

®)

We introduce (8) into Egs. (5) and (7) and write the terms containing the derivatives 620”-/622 and 0°T/072,
i, j=1,2[5]. We will have
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(A (A49 - ppo) +(AL+A) (A -A—2A) P1) - - (A (A49 - ppo) Ay (AL +AY p1)

2 2 all'
+B (A - Ay (Ag —ppo)g#..:O,

011 o 022
(A4g - ppo) 2 A4p1Py g;

- (A, (A4g ppo) Ay (A

(A (A4g

2 2 all'
+B (A - Ay (Ag —ppo)g#..:O,

2 12
%g - @v 28°T, T _ BTgtrg 011+6 O2f],
o
0 At Ay 07" A +A, 07 2o
where 92: p%+ p%; p0=62/6t, and py=0Z/0x%, k=1,2. The equation of the characteristic surface will be obtained
from the condition of insolubility of the last system of equations relative to the derivatives of second order in Z [5].

This is equivaent to the equality to zero of the determinant which is composed of the coefficients of these derivatives.
By expanding this determinant we obtain

(A4912 - ppﬁ) (Bpr(Z) (A49|2 - ppﬁ) (AL - Ay o - 2pp§) +

+ (N - (¢, +a) pﬁ) ((Ag” - PPB) (Ayg” = pPD) +& (A + Ay) pipg)) =0. ©)

Hence for the phase velocities of propagation of elastic and thermoelastic waves we will have

Ay=pV, (10)

BTV (Ay — V) ((Ag — Ap) = 20VA) + (A = (¢, + @) VD) ((Ay = pV)) (AL - pV) +
+€ (A +A,) cos”asin’ o) =0, (11)

where a= ZBZTO(Al +Ay); b=BTo(AL + Av); V2= p(z)/ gz; cos” o = p%/ 92 is the square of the direction cosine of the nor-
mal to the characteristic surface [5]. From (10) we will have

vmzvﬁ
p
We rewrite Eq. (11) as follows:
Vot Blv4+ (B, + By cos” o sin’ a) V- (B4 +Bg cos” a sin a)=0, (12)
where
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TABLE 1. Connectivity Constants a and b in the Plane x3 = 0 of Some Cubically Anisotropic Media

Material Elasic constants x10°, N/m” 0105, Udey | a kN/(deg?) b
A1 Ao Aq
Siver 124 9.34 461 190 98.623 0.0056
Lead 4,66 3.92 144 28.35 88.309 0.0083
Molybdenum 46 176 11.0 50 17.844 0.0015
Aluminum 10.82 6.13 2.85 226 94,063 0.00002
Gold 186 157 420 14.0 83.714 0.006
Copper 16.84 12.14 754 16,61 94.329 0.007
Nickel 24,65 14.73 12.47 1255 68.622 0.0051
Tungsten 50.1 198 15.14 44 13059 0.0017

:T((Al—A2+2A4) bB— (A +A) (c,+@) - Ap
1 PTG, ;
B A (A +AY) +T(c, +a) AfA, — BOTA, (A - Ay B = s(cv+a) (A1+A2)
2= ;
pre, T o

)\A1A4 Ae (A1 A
B, = P B2
Pt pTe,

For the expressions for the velocities of propagation of thermoelastic waves to be obtained from (12) we introduce the
following replacement:

2
B
p=B,- ?+B3coszasm2cx 9=-7 1 ?1(82+B3coszasin20()—B4—Bscoszcxsin2a. (13)

Equation (12) with account for (13) will be written in the form
V6 + pV2 +q9=0.

Hence on the basis of the existing formulas for the roots of a reduced cubic eguation [6] we obtain

0
a D
%?1 2'\/—— cos%(¢+2nk)% b= arccosD-2 ;; D D, k=1,3. (14

____Itis expedient to investigate the dependences of the velocities of propagation of thermoelastic waves Vi,
k=1, 3, on the slope (angle of inclination) a of the normal to the characteristic surface as compared to the velocities
of propagation of elastic waves Vf and VS' and a thermoelastic wave V; which are determined from (11) in the ab-
sence of the effect of connectivity of the mechanica and thermal fields (th= 0) as follows:

vz a2
B+ Agt HA - A) = (A - Ay —2A) (A + A sin“20l
12:5 E , (15
© 0 2p 0
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Fig. 1. Dependences V,(a) and \/‘f(a). V, m/sec; a, rad.
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Fig. 2. Dependences Vy(a) and VS'(O(). V, m/sec; a, rad.
Fig. 3. Dependence V3(a). V, m/sec; A, rad.

T~

Vi = —T(Cv+a) .

(16)
We note that the assumption of a negligibly small interconnection of the mechanica field and the temperature field is
justified, since the calculation carried out for a number of cubically anisotropic materials at To=293 K (lead, silver,
molybdenum, etc.) shows that the constant b has the order of 1073 (Table 1, [7, 8]). The relaxation time of the heat
flux for metas is taken to be 110" sec [4].

Propagation of Discontinuity Surfaces. Let us investigate the dependences of the velocities Vo, and V? (Fig.
1), V; and VS' (Fig. 2), and V3 (Fig. 3) on the slope a of the normal to the characteristic surface for silver
(cy = 2454 kJ/ (degiin®), p = 10505 kg/m°>, and A =418 W/ (deglih) [7, 8]).

As follows from Fig. 1, the thermoelastic wave propagating with velocity Vs in the plane x3 =0 is an eagtic
wave which is accompanied by a thermal field; the temperature field causes the velocity V, to significantly decrease
as compared to the velocity V‘f of an elastic quasilongitudinal wave. Therefore, the presence of the temperature field
in silver causes the longitudina deformations to appear. We note that the velocities differ to the greatest extent for
a =1/4 when the difference between V‘f and V5 is 189 m/sec, which corresponds to a relative decrease of 5% in the
velocity Vo as compared to V?

The comparison of the velocities V; and VS' shows that the temperature field exerts no appreciable influence
on the quantity Vi; therefore, this type of discontinuity surface can be considered to be an elastic quasitransverse
wave. Taking this into account, we can consider that for silver a temperature change does not lead to the appearance
of shear deformations in the plane x3 =0 of a cubically anisotropic body. From Fig. 3 it follows that the velocity of
propagation of the thermoelastic wave V3 explicitly depends on the slope of the normal to the characteristic surface
and increases appreciably as o changes from 0 to T/4. Comparison of it to the velocity V; whose value for silver is
4047 m/sec shows that the interconnection of the mechanical and thermal fields substantialy influences the propagation
of this type of discontinuity surface.

Let us find the group velocities of propagation of the elastic and thermoelastic waves [5]:
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e 9P
We express pg from Eg. (9) as

Ay

O
Po=9V— . (18)
0 p
s 12 32
w O 9B p g D q 08 o
pg): N R cos [T (¢ + 2rKk) , ¢ =accosT— T o1 O E (19)
3 3 3 2000 H

where
ZD 3 0 2
By 6 B9 4 2 2 222 —
p —@2‘—['9 + Bapiy -%‘54%3 ——3 (B2g +B3pip) ~Bspypog, k=13

We differentiate (18) and (19) with respect to p; and pp. Taking into account that p;=gcosa and pp=gsind, we
will have

0
0 A 0
Po_]% cosa, po V sna, (20)
op; P op,
po 101 o 2 5 .2 O
- [psm (<|>+2T|k) —2cosa B,—5B;+Bysin” agx
op, zvk% % 3El+ 5/2 B, =3B+ Bsin oD
3
D D O 4p0
a
2 ad
xcos§(¢+2nk)%——81mscxg (21)
a
6p0 101 0O 2 2 2 0O
psn (c|>+2nk)[|— 2sina - = B7+B,ycos apx
o, NV B-3p o % SR 275/2 é%z 37t 0
| | 3
0 0 O 4p0
1 2 O
xcos%(¢+2nk)%——815inam, (22)
3 0
a
where
1/2
r1:2coscx%—§gg %Bi—384—%Bl(Bz+Bg(l+cosza)sinza)—
0 oo
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Fig. 4. Dependences Vy(a), Py(a), and P‘f(a). V, m/sec; P, m/sec; a, rad.
Fig. 5. Dependences P1(a), V;(a), and PS'(O(). V, m/sec; P, m/sec; a, rad.

—%51(252*' Bgsinzor) —B4sin20( (1+c0520() —3—3%82—38§+ B5sin2a%;
12
r,=2sna E—E‘ng E2Bf—3B4—§Bl(BZ+B3(1+sin20() cosza) -
g %DD %
1 2 1N

-5 B4 (2B, + B cos 0()—B4c0320((1+sin20()—Q%Bz—gBi+B5coszaDD
3 2p 3 T

With account for (17), from (20) we will have PDZV_A_4/ p. In the remaining cases the group velocities of the discon-
tinuity surfaces will be written in the form

2

1V
K (K)
Po Po
P = + . 23
k %LGMEZ %pz @KE (23)

We compare the dependences of the group velocities of propagation of thermoelastic waves P, k=ﬁ on
the slope a of the normal to the characteristic surface with the corresponding dependences of the velocities of propa
gation of elastic waves P? and PS' which are determined according to (23) by the following expressions:

2 2
. o AL+ ALt (A —Ap —26 (A +Ay)sin a
%po’ E 71 VA A —cAgrA)sn’2a (24)
0 2 , '
PL P \/A1+A4¢V(A1—A4)2—s(A1+A2)S|n2 20

(A - A)° - 28 (AL +A,) cos” o

d A+ A+
py-? _Vi v V(A - A)"—€ (A +A) sin® 2 sna 25)
P2 2y V(A - A)2—¢ (A, +A) sin?2 |
A+ A, T V(AL =AY =g (A + Ay sin” 2o

It is easy to see that the group velocity P; is determined by formula (16). We plot the group and phase velocities ver-
sus the slope of the norma to the characteristic surface with the example of silver (Figs. 4-6).

As follows from Fig. 4, the group velocity of propagation of a thermoelastic wave P> is equal to the phase
velocity Vo for a =114, n € Z; for other values of the dope a the group velocity is higher than the phase velocity.
However the velocity P, is much lower than P?, i.e., the presence of the temperature field leads to a decrease in both
the phase velocity and the group velocity of propagation of a discontinuity surface of this type (Figs. 1 and 4).
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Fig. 7. Dependences V(1) and V(1) in the plane x3=0. V, m/sec; T, sec.

The velocity P; coincides with PS', i.e., this discontinuity surface is a purely elastic quasitransverse wave and
in the plane x3=0 of a cubically anisotropic body its propagation is not associated with a temperature change. It
should be noted that P4 is much higher than the phase velocity of propagation of the discontinuity surface and for a
certain value of the dope of the normal to the characteristic surface the group velocity P1 is maximum (Fig. 5). The
dependences P3(0) and Vs(a) are analogous and the inequality Ps(a) = V3(a) is fulfilled between them for any values
of the dope a (Fig. 6).

Influence of the Relaxation Time of the Heat Flux on the Phase and Group Veocities of Propagation of
Discontinuity Surfaces. It should be noted that no exact period of relaxation of the heat flux has been established for
metals [9] and one sometimes takes T =0.500" M sec aong with a value of T equal to 110~ sec in the calculations
[10]. Therefore, it is of interest to investigate the influence of the period of relaxation of the heat flux on the phase
velocity of thermoelastic waves. Let us consider the plots of V, and V3 versus T (Fig. 7).

As follows from Fig. 7, when T - 0 the velocity of the thermoelastic wave V, tends to a finite limit; the
curves V(1) have different limits depending on the slope of the norma to the characteristic surface, and the value of
the limiting velocity increases with a. This confirms the idea that the type of the crystal lattice of an anisotropic ma
terial (of a cubically anisotropic materiad in this case) is determining for the value of the period of relaxation of the
heat flux [9]. The dependence of the thermoelastic-wave velocity V3 on T is unaffected, in practice, by the slope of
the normal to the characteristic surface. Whereas for T of the order of 107! sec the difference in its values is about
20-30 m/sec, for T~ 102 sec they do not differ for different slopes a; when 1 — 0 the velocity V3 becomes infi-
nitely high (Fig. 7). It should be added that a change in the period of relaxation of the heat flux exerts no influence
on the values of the velocity V.

We note that when the periods of relaxation of the heat flux are extremely short the values of the velocities
Vo(0) and Vo(1v4) (Fig. 4) are very much like the velocities of propagation V?(O) and V‘f(Tr/4) respectively (Fig. 1).
This circumstance and the fact that the dependences V3(t) and Vi(t) virtualy coincide when T — 0 enable us to inter-
pret the limiting transition to a zero time of relaxation of the heat flux as the transition from the generalized intercon-
nected dynamic problem of thermoelasticity of a cubically anisotropic body to an unconnected problem where we have
two elastic waves and one thermoelastic wave.
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Fig. 8. Dependence Py(1). P, m/sec; T, sec.
Fig. 9. Dependence P3(1). P, m/sec; T, sec.

Fig. 10. Wave fronts in the plane x3=0. The scae is 1:2000 m.

Let us consider the influence of the relaxation time of the heat flux on the change in the group velocities of
propagation of discontinuity surfaces.

From Figs. 8 and 9 it follows that in the plane x3 =0 of a cubically anisotropic body the dependences of the
group velocities Py(T) and P3(T) are analogous to the dependences of the phase velocities Vo and V3 on T. Thus, when
T - 0 the velocity P, tends to a finite limit very much like the value of P‘f for the corresponding slope of the normal
to the characteristic surface (Figs. 4 and 8). Unlike P,, the dependence Ps(1) is unaffected, in practice, by the selected
direction of propagation of the discontinuity surface, and the velocity P3 increases without bound with decrease in T
regardless of the slope a (Fig. 9).

Wave Fronts of Discontinuity Surfaces. The regularities of propagation of discontinuity surfaces in the plane
x3=0 of a cubicaly anisotropic body clearly characterize their wave fronts, which can be constructed using expres-
sions (20)—(22). We have

O K K
o5 _opy ax° _app —

= , = , j=1,2; k=1,3.
&t “op’ dt  op
Hence for t=1 we obtain
2 2 M (26)
X1+X2—_,
p
()
0 -
.(k):&, j=1,2; k=1,3. (27)
apj
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Thua in our case the characteristic surface at any instant of time consists of four curves, one of which is the
circle L™ of radius V—A_4/ p while the other three are prescribed parametrically in the form (xgk) x&k)) k= 1 3. The wave
fronts of the discontinuity surfaces in the plane x3 =0 of a cubicaly anisotropic body are given in Fig. 10.

As follows from Fig. 10, in propagation of thermoelastic waves, the front L3 leads L;, which is a circle of
radius 4027 m, and conversely, the front L, lags behind L?. The elastic wave L4 is propagating with the occurrence
of lacuna loops formed by intersection of the branches of this curve.

Conclusions. We note that silver belongs to cubically anisotropic materials in which A — Ay — 2A4 <0 (lead,
brass, nickel, copper, etc.), which substantialy influences the regularities of propagation of waves in continuous media
characterized by three elastic constants. In the case where A; — Ay — 2A4 <0 (molybdenum, tungsten, etc.) the depend-
ences of the phase and group velocities on the slope of the normal to the characteristic surface and the wave fronts
differ from those presented in Figs. 1-10.

NOTATION

u=(uy, Uy, Ug), displacement vector; A, Ay, and A4, €elastic constants, 3, thermoelastic constant; 3= (A +
2A); a, coefficient of linear thermal expansion; T, absolute temperature; A, thermal conductivity; 1, relaxation time of
the heat flux; c¢,, specific heat at constant volume; T, initia temperature.
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