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The equations of motion of a two-dimensional cubically anisotropic thermoelastic medium in stress-tensor
components have been obtained. The equation of characteristics has been derived and the dependences of the
phase and group velocities of propagation of discontinuity surfaces on the slope of the normal to the charac-
teristic surface and the period of relaxation of the heat flux have been investigated using this equation.

Introduction. The dynamic problems of the theory of thermoelasticity of isotropic and anisotropic bodies play
an important role in investigating the processes of deformation of continuous media. However in most cases their so-
lution is associated with the use of the theory of plane waves and is made difficult by the fact that dispersion equa-
tions have a cumbersome form and can be solved analytically just for special directions or planes. Thus, the
propagation of one-dimensional waves in an isotropic medium has been investigated in [1], while the propagation of
one-dimensional and two-dimensional waves in elastic anisotropic bodies with allowance for the relaxation time of the
heat flux has been considered in [2, 3]. Of undoubted interest are [4, 5], where results of investigations of wave proc-
esses in a thermoelastic medium using the method of characteristics are given. Below we consider implementation of
the method of characteristics as applied to an analysis of the regularities of propagation of discontinuity surfaces in a
two-dimensional cubically anisotropic medium in the plane x3 = 0.

Method of Characteristics. To describe the dynamic processes in the plane x3 = 0 of a cubically anisotropic
medium we write the Duhamel–Neumann law in the following form [2, 3]:

σ11 = A1e11 + A2e22 − βT ,  σ22 = A2e11 + A1e22 − βT , σ33 = A2 (e11 + e22) − βT ,  σ12 = σ21 = 2A4e12 , (1)

where ekl = 
1
2

 (∂luk + ∂kul) is the deformation tensor; ∂k = ∂ ⁄ ∂xk, k, l = 1, 2.

Expressions (1) yield the following equations of motion [2, 3]:

(A4∆ + ε∂i
2) ui + (A2 + A4) ∂i  ∑ 

k=1

2

 ∂kuk + Xi = ρu
..

i + β∂iT ,   i = 1, 2 , (2)

here ρ is the density, Xi are the mass forces, u
..

i = ∂2ui
 ⁄ ∂t2, i = 1, 2, and ε = A1 − A2 − 2A4.

To pass to the equations of motion in stresses we take into account that the independent components in (1)
are σ11, σ12, and σ22. We differentiate (2) with respect to xi and xj and add them together. As a result we obtain

A4∆ (∂iuj + ∂jui) + ε (∂j∂i
2
ui + ∂i∂j

2
uj) + 2 (A2 + A4) ∂j∂i  ∑ 

k=1

2

 ∂kuk + ∂jXi + ∂iXj = ρ (∂ju
..

i + ∂iu
..

j) + 2β∂i∂jT ,

or

2A4∆eij + ε∂i∂j (eii + ejj) + 2 (A2 + A4) ∂j∂i  ∑ 

k=1

2

 ekk + ∂jXi + ∂iXj = 2ρe
..

ij + 2β∂i∂jT . (3)
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Expressions (1) yield the following relations for the deformation tensor:

e11 = 
A1σ11 − A2σ22

A1
2
 − A2

2
 + 

βT

A1 + A2

 ,   e22 = 
A1σ22 − A2σ11

A1
2
 − A2

2
 + 

βT

A1 + A2

 ,

 e11 + e22 = 
σ11 + σ22

A1 + A2
 + 

2βT

A1 + A2
 ,   e12 = 

σ12

2A4
 .

(4)

We introduce (4) into system (3) for the cases where i = j = 1, 2
___

 and i = 1, j = 2. Upon obvious transformations
we will have

A1 (A4∆σ11 − ρσ
..

11) + (A1 + A2) (A1 − A2 − 2A4) ∂1
2σ11 − A2 (A4∆σ22 − ρσ

..
22) + A4 (A1 + A2) ∂1

2σ22 + ∂1X1 +

+ β (A1 − A2) (A4∆T − ρT
..
) = 0 ,

(5)
A4∆σ12 − ρσ

..
12 + A4∂1∂2 (σ11 + σ22) + ∂2X1 + ∂1X2 = 0 ,

A1 (A4∆σ22 − ρσ
..

22) + (A1 + A2) (A1 − A2 − 2A4) ∂2
2σ22 − A2 (A4∆σ11 − ρσ

..
11) + A4 (A1 + A2) ∂2

2σ11 + ∂2X2 +

+ β (A1 − A2) (A4∆T − ρT
..
) = 0 .

To obtain a complete system of equations of generalized interconnected thermoelasticity for a cubically anisotropic
body in the plane x3 = 0 we use the following heat-conduction equation [3, 4]:

λ∆T − cv (T
.
 + τT

..
) = T0 β 







 ∑ 

k=1

2

 e
.
kk + τ  ∑ 

k=1

2

 e
..

kk







 , (6)

From (6), with account for (4), we obtain

λ∆T − (T
.
 + τT

..
) 



cv + 

2β2
T0

A1 + A2




 − 

βT0

A1 + A2
 (σ
.

11 + σ
.

22 + τ (σ
..

11 + σ
..

22)) = 0 . (7)

Here ∆ = 
∂2

∂x1
2 + 

∂2

∂x2
2.

We prescribe the initial data for system (5) and (7) on the surface Z = Z0(t, x1, x2) and pass to new variables
according to the following scheme [5]:

Z = Z0 (t, x1, x2) ,   Zk = Zk (t, x1, x2) ,   k = 1, 2 .

Then

∂y (t, X)
∂xk

 =  ∑ 

i=0

2

 
∂y

∂Zi
 
∂Zi

∂xk
 ,   

∂2
y

∂xk∂xn
 =   ∑ 

i,j=0

2

  
∂2

y

∂Zj∂Zi
 
∂Zi

∂xk
 
∂Zj

∂xn
 +  ∑ 

i=0

2

 
∂y

∂Zi
 
∂2

Zi

∂xn∂xk
 . (8)

We introduce (8) into Eqs. (5) and (7) and write the terms containing the derivatives ∂2σij
 ⁄ ∂Z2 and  ∂2T ⁄ ∂Z2,

i,  j = 1, 2 [5]. We will have
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(A1 (A4g
2
 − ρp0

2) + (A1 + A2) (A1 − A2 − 2A4) p1
2) 
∂2σ11

∂Z
2  − (A2 (A4g

2
 − ρp0

2) − A4 (A1 + A2) p1
2) 
∂2σ22

∂Z
2  +

+ β (A1 − A2) (A4g
2
 − ρp0

2) 
∂2

T

∂Z
2 + ... = 0 ,

(A4g
2
 − ρp0

2) 
∂2σ12

∂Z
2

 + A4p1p2 







∂2σ11

∂Z
2  + 

∂2σ22

∂Z
2







 + ... = 0 ,

(A1 (A4g
2
 − ρp0

2) + (A1 + A2) (A1 − A2 − 2A4) p1
2) 
∂2σ22

∂Z
2

 − (A2 (A4g
2
 − ρp0

2) − A4 (A1 + A2) p1
2) 
∂2σ11

∂Z
2  +

+ β (A1 − A2) (A4g
2
 − ρp0

2) 
∂2

T

∂Z
2 + ... = 0 ,







λg

2
 − τp0

2
 






cv + 

2β2
T0

A1 + A2














 
∂2

T

∂Z
2
 − 

βT0τp0
2

A1 + A2

 







∂2σ11

∂Z
2

 + 
∂2σ22

∂Z
2







 + ... = 0 ,

where g2 = p1
2 + p2

2; p0 = ∂Z ⁄ ∂t, and pk = ∂Z ⁄ ∂xk, k = 1, 2. The equation of the characteristic surface will be obtained
from the condition of insolubility of the last system of equations relative to the derivatives of second order in Z [5].
This is equivalent to the equality to zero of the determinant which is composed of the coefficients of these derivatives.
By expanding this determinant we obtain

(A4g
2
 − ρp0

2) (βbτp0
2
 (A4g

2
 − ρp0

2) ((A1 − A2) g
2
 − 2ρp0

2) +

+ (λg
2
 − (cv + a) p0

2) ((A4g
2
 − ρp0

2) (A1g
2
 − ρp0

2) + ε (A1 + A2) p1
2
p2

2)) = 0 . (9)

Hence for the phase velocities of propagation of elastic and thermoelastic waves we will have

A4 = ρV
2
 , (10)

βbτV2
 (A4 − ρV

2) ((A1 − A2) − 2ρV
2) + (λ − (cv + a) V2) ((A4 − ρV

2) (A1 − ρV
2) +

+ ε (A1 + A2) cos
2
 α sin

2
 α) = 0 , (11)

where a = 2β2T0(A1 + A2); b = βT0(A1 + A2); V2 = p0
2 ⁄ g2; cos2 α = p1

2 ⁄ g2 is the square of the direction cosine of the nor-
mal to the characteristic surface [5]. From (10) we will have

V
∗
 = √ A4

ρ
 .

We rewrite Eq. (11) as follows:

V
6
 + B1V

4
 + (B2 + B3 cos

2
 α sin

2
 α) V2

 − (B4 + B5 cos
2
 α sin

2
 α) = 0 , (12)

where
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B1 = 
τ ((A1 − A2 + 2A4) bβ − (A1 + A4) (cv + a)) − λρ

ρτcv
 ;

B2 = 
λρ (A1 + A4) + τ (cv + a) A1A4 − βbτA4 (A1 − A2)

ρ2τcv

 ;   B3 = 
ε (cv + a) (A1 + A2)

ρ2
cv

 ;

B4 = 
λA1A4

ρ2τcv

 ;   B5 = 
λε (A1 + A2)

ρ2τcv

 .

For the expressions for the velocities of propagation of thermoelastic waves to be obtained from (12) we introduce the
following replacement:

p = B2 − 
B1

2

3
 + B3 cos

2
 α sin

2
 α , q = 

2B1
3

27
 − 

B1

3
 (B2 + B3 cos

2
 α sin

2
 α) − B4 − B5 cos

2
 α sin

2
 α . (13)

Equation (12) with account for (13) will be written in the form

V
6
 + pV

2
 + q = 0 .

Hence on the basis of the existing formulas for the roots of a reduced cubic equation [6] we obtain

Vk = 




− 

B1

3
 + 2 √ − 

p

3
 cos 





1

3
 (ϕ + 2πk)









1 ⁄ 2

 ,   ϕ = arccos 









− 
q

2
 √− 





3

p




3

 






  ,   k = 1, 3

___
 . (14)

It is expedient to investigate the dependences of the velocities of propagation of thermoelastic waves Vk,
k = 1, 3

___
, on the slope (angle of inclination) α of the normal to the characteristic surface as compared to the velocities

of propagation of elastic waves V1
el and V2

el and a thermoelastic wave Vt which are determined from (11) in the ab-
sence of the effect of connectivity of the mechanical and thermal fields (τb ≈ 0) as follows:

V1,2
el

 = 








A1 + A4 %  (A1 − A4)
2
 − (A1 − A2 − 2A4) (A1 + A2) sin

2
 2α

1 ⁄ 2

2ρ











1 ⁄ 2

 , (15)

TABLE 1. Connectivity Constants a and b in the Plane x3 = 0 of Some Cubically Anisotropic Media

Material
Elastic constants ×1010, N ⁄ m2 

αt⋅10−6, 1/deg a, kN/(deg⋅m2) b
A1 A2 A4

Silver 12.4 9.34 4.61 19.0 98.623 0.0056

Lead 4.66 3.92 1.44 28.35 88.309 0.0083

Molybdenum 46 17.6 11.0 5.0 17.844 0.0015

Aluminum 10.82 6.13 2.85 22.6 94.063 0.00902

Gold 18.6 15.7 4.20 14.0 83.714 0.006

Copper 16.84 12.14 7.54 16.61 94.329 0.007

Nickel 24.65 14.73 12.47 12.55 68.622 0.0051

Tungsten 50.1 19.8 15.14 4.4 13059 0.0017
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Vt = √ λτ (cv + a)
 . (16)

We note that the assumption of a negligibly small interconnection of the mechanical field and the temperature field is
justified, since the calculation carried out for a number of cubically anisotropic materials at T0 = 293 K (lead, silver,
molybdenum, etc.) shows that the constant b has the order of 10−3 (Table 1, [7, 8]). The relaxation time of the heat
flux for metals is taken to be 1⋅10−11 sec [4].

Propagation of Discontinuity Surfaces. Let us investigate the dependences of the velocities V2 and V1
el (Fig.

1), V1 and V2
el (Fig. 2), and V3 (Fig. 3) on the slope α of the normal to the characteristic surface for silver

(cv = 2454 kJ ⁄ (deg⋅m3), ρ = 10505 kg ⁄ m3, and λ = 418 W ⁄ (deg⋅m) [7, 8]).
As follows from Fig. 1, the thermoelastic wave propagating with velocity V2 in the plane x3 = 0 is an elastic

wave which is accompanied by a thermal field; the temperature field causes the velocity V2 to significantly decrease
as compared to the velocity V1

el of an elastic quasilongitudinal wave. Therefore, the presence of the temperature field
in silver causes the longitudinal deformations to appear. We note that the velocities differ to the greatest extent for
α = π ⁄ 4 when the difference between V1

el and V2 is 189 m/sec, which corresponds to a relative decrease of 5% in the
velocity V2 as compared to V1

el.
The comparison of the velocities V1 and V2

el shows that the temperature field exerts no appreciable influence
on the quantity V1; therefore, this type of discontinuity surface can be considered to be an elastic quasitransverse
wave. Taking this into account, we can consider that for silver a temperature change does not lead to the appearance
of shear deformations in the plane x3 = 0 of a cubically anisotropic body. From Fig. 3 it follows that the velocity of
propagation of the thermoelastic wave V3 explicitly depends on the slope of the normal to the characteristic surface
and increases appreciably as α changes from 0 to π ⁄ 4. Comparison of it to the velocity Vt whose value for silver is
4047 m/sec shows that the interconnection of the mechanical and thermal fields substantially influences the propagation
of this type of discontinuity surface.

Let us find the group velocities of propagation of the elastic and thermoelastic waves [5]:

Fig. 1. Dependences V2(α) and V1
el(α). V, m/sec; α, rad.

Fig. 2. Dependences V1(α) and V2
el(α). V, m/sec; α, rad.

Fig. 3. Dependence V3(α). V, m/sec; α, rad.
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P = √



∂p0

∂p1





 2

 + 




∂p0

∂p2





 2

 . (17)

We express p0 from Eq. (9) as

p0
∗
 = g √ A4

ρ
 , (18)

p0
(k)

 = 






− 

gB1

3
 + 2 







− 

p
∗

3








1 ⁄ 2
 cos 





1

3
 (ϕ∗  + 2πk)












1 ⁄ 2

 ,   ϕ∗  = arccos 






− 

q
∗

2
 



− 




3

p
∗



 
3

 




1 ⁄ 2
 






 , (19)

where

p
∗
 = 



B2 − 

B1
2

3




 g

4
 + B3p1

2
p2

2
 ; q

∗
 = 




2B1
3

27
 − B4




 g

6
 − 

B1g
2

3
 (B2 g

4
 + B3 p1

2
p2

2) − B5 p1
2
p2

2
g

2
 ,   k = 1, 3

___
 .

We differentiate (18) and (19) with respect to p1 and p2. Taking into account that p1 = g cos α and p2 = g sin α, we
will have

∂p0
∗

∂p1
 = √ A4

ρ
 cos α ,   

∂p0
∗

∂p2
 = √ A4

ρ
 sin α , (20)

∂p0
(k)

∂p1
 = 

1

2Vk
 










1

√ − 3p
 










p sin 




1

3
 (ϕ + 2πk)




 

r1

3 



1 + 

q
2

4
 
27

p
3





1 ⁄ 2 − 2 cos α 



B2 − 

2

3
 B1

2
 + B3 sin

2
 α



 ×

× cos 




1

3
 (ϕ + 2πk)











 − 

2

3
 B1 cos α  










 , (21)

∂p0
(k)

∂p2
 = 

1

2Vk
 










1

√ − 3p
 










p sin 




1

3
 (ϕ + 2πk)




 

r2

3 



1 + 

q
2

4
 
27

p
3





1 ⁄ 2 − 2 sin α 



B2 − 

2

3
 B1

2
 + B3 cos

2
 α



 ×

× cos 




1

3
 (ϕ + 2πk)











 − 

2

3
 B1 sin α  










 , (22)

where

r1 = 2 cos α 

− 


3
p




3



1 ⁄ 2
 

2
9

 B1
3
 − 3B4 − 

2
3

 B1 (B2 + B3 (1 + cos
2
 α) sin

2
 α) −
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− 
1
3

 B1 (2B2 + B3 sin
2
 α) − B4 sin

2
 α (1 + cos

2
 α) − 

3q
2p

 

2B2 − 

2
3

 B1
2
 + B5 sin

2
 α




 ;

r2 = 2 sin α 

− 


3
p




3



1 ⁄ 2
 


2
9

 B1
3
 − 3B4 − 

2
3

 B1 (B2 + B3 (1 + sin
2
 α) cos

2
 α) −

− 
1
3

 B1 (2B2 + B3 cos
2
 α) − B4 cos

2
 α (1 + sin

2
 α) − 

3q
2p

 

2B2 − 

2
3

 B1
2
 + B5 cos

2
 α




 .

With account for (17), from (20) we will have P∗  = √A4
 ⁄ ρ . In the remaining cases the group velocities of the discon-

tinuity surfaces will be written in the form

Pk = 














∂p0
(k)

∂p1








 2

 + 







∂p0
(k)

∂p2








 2






1 ⁄ 2

 . (23)

We compare the dependences of the group velocities of propagation of thermoelastic waves Pk, k = 1, 3
___

, on
the slope α of the normal to the characteristic surface with the corresponding dependences of the velocities of propa-
gation of elastic waves P1

el and P2
el which are determined according to (23) by the following expressions:








∂p0
(1,2)

∂p1








el

 = √ 1
2ρ

 

A1 + A4 % 
(A1 − A4)

2
 − 2ε (A1 + A2) sin

2
 α

√(A1 − A4)
2 − ε (A1 + A2) sin2 2α

√A1 + A4 % √(A1 − A4)
2 − ε (A1 + A2) sin2 2α

 cos α , (24)








∂p0
(1,2)

∂p2








el

 = √ 1
2ρ

 

A1 + A4 % 
(A1 − A4)

2
 − 2ε (A1 + A2) cos

2
 α

√(A1 − A4)
2 − ε (A1 + A2) sin2 2α

√A1 + A4 % √(A1 − A4)
2 − ε (A1 + A2) sin2 2α

 sin α . (25)

It is easy to see that the group velocity Pt is determined by formula (16). We plot the group and phase velocities ver-
sus the slope of the normal to the characteristic surface with the example of silver (Figs. 4–6).

As follows from Fig. 4, the group velocity of propagation of a thermoelastic wave P2 is equal to the phase
velocity V2 for α = πn ⁄ 4, n 2 Z; for other values of the slope α the group velocity is higher than the phase velocity.
However the velocity P2 is much lower than P1

el, i.e., the presence of the temperature field leads to a decrease in both
the phase velocity and the group velocity of propagation of a discontinuity surface of this type (Figs. 1 and 4).

Fig. 4. Dependences V2(α), P2(α), and P1
el(α). V, m/sec; P, m/sec; α, rad.

Fig. 5. Dependences P1(α), V1(α), and P2
el(α). V, m/sec; P, m/sec; α, rad.
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The velocity P1 coincides with P2
el, i.e., this discontinuity surface is a purely elastic quasitransverse wave and

in the plane x3 = 0 of a cubically anisotropic body its propagation is not associated with a temperature change. It
should be noted that P1 is much higher than the phase velocity of propagation of the discontinuity surface and for a
certain value of the slope of the normal to the characteristic surface the group velocity P1 is maximum (Fig. 5). The
dependences P3(α) and V3(α) are analogous and the inequality P3(α) ≥ V3(α) is fulfilled between them for any values
of the slope α (Fig. 6).

Influence of the Relaxation Time of the Heat Flux on the Phase and Group Velocities of Propagation of
Discontinuity Surfaces. It should be noted that no exact period of relaxation of the heat flux has been established for
metals [9] and one sometimes takes τ = 0.5⋅10−11 sec along with a value of τ equal to 1⋅10−11 sec in the calculations
[10]. Therefore, it is of interest to investigate the influence of the period of relaxation of the heat flux on the phase
velocity of thermoelastic waves. Let us consider the plots of V2 and V3 versus τ (Fig. 7).

As follows from Fig. 7, when τ → 0 the velocity of the thermoelastic wave V2 tends to a finite limit; the
curves V2(τ) have different limits depending on the slope of the normal to the characteristic surface, and the value of
the limiting velocity increases with α. This confirms the idea that the type of the crystal lattice of an anisotropic ma-
terial (of a cubically anisotropic material in this case) is determining for the value of the period of relaxation of the
heat flux [9]. The dependence of the thermoelastic-wave velocity V3 on τ is unaffected, in practice, by the slope of
the normal to the characteristic surface. Whereas for τ of the order of 10−11 sec the difference in its values is about
20–30 m/sec, for τ D 10−12 sec they do not differ for different slopes α; when τ → 0 the velocity V3 becomes infi-
nitely high (Fig. 7). It should be added that a change in the period of relaxation of the heat flux exerts no influence
on the values of the velocity V1.

We note that when the periods of relaxation of the heat flux are extremely short the values of the velocities
V2(0) and V2(π ⁄ 4) (Fig. 4) are very much like the velocities of propagation V1

el(0) and V1
el(π ⁄ 4) respectively (Fig. 1).

This circumstance and the fact that the dependences V3(τ) and Vt(τ) virtually coincide when τ → 0 enable us to inter-
pret the limiting transition to a zero time of relaxation of the heat flux as the transition from the generalized intercon-
nected dynamic problem of thermoelasticity of a cubically anisotropic body to an unconnected problem where we have
two elastic waves and one thermoelastic wave.

Fig. 6. Dependences P3(α) and V3(α). V, m/sec; P, m/sec; α, rad.

Fig. 7. Dependences V2(τ) and V3(τ) in the plane x3 = 0. V, m/sec; τ, sec.
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Let us consider the influence of the relaxation time of the heat flux on the change in the group velocities of
propagation of discontinuity surfaces.

From Figs. 8 and 9 it follows that in the plane x3 = 0 of a cubically anisotropic body the dependences of the
group velocities P2(τ) and P3(τ) are analogous to the dependences of the phase velocities V2 and V3 on τ. Thus, when
τ → 0 the velocity P2 tends to a finite limit very much like the value of P1

el for the corresponding slope of the normal
to the characteristic surface (Figs. 4 and 8). Unlike P2, the dependence P3(τ) is unaffected, in practice, by the selected
direction of propagation of the discontinuity surface, and the velocity P3 increases without bound with decrease in τ
regardless of the slope α (Fig. 9).

Wave Fronts of Discontinuity Surfaces. The regularities of propagation of discontinuity surfaces in the plane
x3 = 0 of a cubically anisotropic body clearly characterize their wave fronts, which can be constructed using expres-
sions (20)–(22). We have

dxj

dt
 = 
∂p0

∗

∂pj
 ,   

dxj
(k)

dt
 = 
∂p0

(k)

∂pj
 ,   j = 1, 2 ;   k = 1, 3

___
 .

Hence for t = 1 we obtain

x1
2
 + x2

2
 = 

A4

ρ
 ,

(26)

xj
(k)

 = 
∂p0

(k)

∂pj
 ,   j = 1, 2 ;   k = 1, 3

___
 . (27)

Fig. 8. Dependence P2(τ). P, m/sec; τ, sec.

Fig. 9. Dependence P3(τ). P, m/sec; τ, sec.

Fig. 10. Wave fronts in the plane x3 = 0. The scale is 1:2000 m.
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Thus, in our case the characteristic surface at any instant of time consists of four curves, one of which is the
circle L∗  of radius √A4

 ⁄ ρ  while the other three are prescribed parametrically in the form (x1
(k), x2

(k)), k = 1, 3
___

. The wave
fronts of the discontinuity surfaces in the plane x3 = 0 of a cubically anisotropic body are given in Fig. 10.

As follows from Fig. 10, in propagation of thermoelastic waves, the front L3 leads Lt, which is a circle of
radius 4027 m, and conversely, the front L2 lags behind L1

el. The elastic wave L1 is propagating with the occurrence
of lacuna loops formed by intersection of the branches of this curve.

Conclusions. We note that silver belongs to cubically anisotropic materials in which A1 − A2 − 2A4 < 0 (lead,
brass, nickel, copper, etc.), which substantially influences the regularities of propagation of waves in continuous media
characterized by three elastic constants. In the case where A1 − A2 − 2A4 < 0 (molybdenum, tungsten, etc.) the depend-
ences of the phase and group velocities on the slope of the normal to the characteristic surface and the wave fronts
differ from those presented in Figs. 1–10.

NOTATION

u = (u1, u2, u3), displacement vector; A1, A2, and A4, elastic constants; β, thermoelastic constant; β = αt(A1 +
2A2); α, coefficient of linear thermal expansion; T, absolute temperature; λ, thermal conductivity; τ, relaxation time of
the heat flux; cv, specific heat at constant volume; T0, initial temperature.
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